Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images.

نویسندگان

  • Kourosh M Naeini
  • Whitney B Pope
  • Timothy F Cloughesy
  • Robert J Harris
  • Albert Lai
  • Ascia Eskin
  • Reshmi Chowdhury
  • Heidi S Phillips
  • Phioanh L Nghiemphu
  • Yalda Behbahanian
  • Benjamin M Ellingson
چکیده

BACKGROUND Subtypes of glioblastoma multiforme (GBM) based on genetic and molecular alterations are thought to cause alterations in anatomic MRI owing to downstream biological changes, such as edema production, blood-brain barrier breakdown, and necrosis. The purpose of the current study was to identify a potential relationship between imaging features and the mesenchymal (MES) GBM subtype, which has the worst patient prognosis. METHODS MRIs from 46 patients with histologically confirmed GBM were retrospectively analyzed. The volume of contrast enhancement, regions of central necrosis, and hyperintensity of T2/fluid attenuated inversion recovery (FLAIR) were measured. Additionally, the ratio of T2/FLAIR hyperintense volume to the volume of contrast enhancement and necrosis was calculated. RESULTS The volume of contrast enhancement, volume of central necrosis, combined volume of contrast enhancement and central necrosis, and the ratio of T2/FLAIR to contrast enhancement and necrosis were significantly different in MES compared with non-MES GBM (Mann-Whitney, P < .05). Receiver-operator characteristics indicated that these 4 metrics were all significant predictors of the MES phenotype. The volume ratio of T2 hyperintensity to contrast enhancement and central necrosis was significantly lower in MES vs non-MES GBM (P < .0001), was a significant predictor of the MES phenotype (area under the curve = 0.93, P < .001), and could be used to stratify short- and long-term overall survival (log-rank, P = .0064 using cutoff of 3.0). These trends were also present when excluding isocitrate dehydrogenase 1 mutant tumors and incorporating covariates such as age and KPS score. CONCLUSIONS Results suggest that volume ratio may be a simple, cost-effective, and noninvasive biomarker for quickly identifying MES GBM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Structural Changes Caused by Autism Spectrum Disorder Based on Volumetric Analysis of Magnetic Resonance Images: A Review Study

Background and purpose: Autism spectrum disorder (ASD) is a psychiatric disorder which occurs in early years of life and causes various individual and social problems. Early detection of autism would help in taking necessary precautions and preventing its adverse side effects. Methods & Materials: In this paper, we reviewed the articles that have investigated brain structural changes caused by...

متن کامل

Advanced quantitative MRI radiomics features for recurrence prediction in glioblastoma multiform patients

Introduction: Advanced quantitative information such as radiomics features derived from magnetic resonance (MR) image may be useful for outcome prediction, prognostic models or response biomarkers in Glioblastoma (GBM). The main aim of this study was to evaluate MRI radiomics features for recurrence prediction in glioblastoma multiform.   Materials and Methods:</str...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

Differentiation of active tumor from edematous regions of glioblastoma multiform tumor in diffusion MR images using heterogeneity analysis method

Background: Due to intrinsic heterogeneity of cellular distribution and density within diffusion weighted images (DWI) of glioblastoma multiform (GBM) tumors, differentiation of active tumor and peri-tumoral edema regions within these tumors is challenging. The aim of this paper was to take advantage of the differences among heterogeneity of active tumor and edematous regions within the gliobla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuro-oncology

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2013